
Conditional Generative Adversarial Networks for Speed Control in Trajectory
Simulation

Sahib Julka
University of Passau

Germany
sahib.julka@uni-passau.de

Vishal Sowrirajan
University of Passau

Germany
sowrir01@ads.uni-passau.de

Joerg Schloetterer
University of Duisburg-Essen

Germany
joerg.schloetterer@uni-due.de

Michael Granitzer
University of Passau

Germany
michael.granitzer@uni-passau.de

Abstract

Motion behaviour is driven by several factors - goals,
presence and actions of neighbouring agents, social rela-
tions, physical and social norms, the environment with its
variable characteristics, and further. Most factors are not
directly observable and must be modelled from context. Tra-
jectory prediction, is thus a hard problem, and has seen in-
creasing attention from researchers in the recent years. Pre-
diction of motion, in application, must be realistic, diverse
and controllable. In spite of increasing focus on multimodal
trajectory generation, most methods still lack means for ex-
plicitly controlling different modes of the data generation.
Further, most endeavours invest heavily in designing spe-
cial mechanisms to learn the interactions in latent space.
We present Conditional Speed GAN (CSG), that allows con-
trolled generation of diverse and socially acceptable trajec-
tories, based on user controlled speed. During prediction,
CSG forecasts future speed from latent space and conditions
its generation based on it. CSG is comparable to state-of-
the-art GAN methods in terms of the benchmark distance
metrics, while being simple and useful for simulation and
data augmentation for different contexts such as fast or slow
paced environments. Additionally, we compare the effect of
different aggregation mechanisms and show that a naive ap-
proach of concatenation works comparable to its attention
and pooling alternatives.

1. Introduction

Modelling social interactions and the ability to forecast
motion dynamics is pertinent to several application domains
such as robot planning systems [1], traffic operations [2],

and autonomous vehicles [3]. However, it remains a chal-
lenge due to the subjectivity and variability of interactions
in real world scenarios. Trajectory prediction not only needs
to be sensitive to several real world constraints, but also in-
volves implicit semantic modelling of an agents mobility
patterns, while anticipating the movements of other agents
in the scene.

Recently we have witnessed a shift in perspective from
the more deterministic approaches of agent modelling with
handcrafted features [4–9], to the latent learning of vari-
able outcomes via complex data-driven deep neural network
architectures [10–13]. State-of-the-art systems are able to
generate variable or multimodal predictions that are socially
acceptable (adhere to social norms), spatially aware and
similar to the semantics in training data. Most systems can
sufficiently generate outcomes according to the original dis-
tribution, but lack means for controlling different modes of
data generation, or to be able to extrapolate to unseen con-
texts. Consequently, controlled simulation is a challenge.

Furthermore, most approaches focus on modelling of a
single agent i.e., pedestrians [10] or vehicles [14], and lack,
thus, the modelling of heterogeneous semantic classes. We
propose that these systems need to be 1. Spatio-temporal
context aware: aware of space and temporal dynamics of
surrounding agents to anticipate possible interactions and
avoid collision, 2. Control-aware: compliant to external and
internal constraints, such as kinematic constraints, and sim-
ulation control, and 3. Probabilistic: able to anticipate mul-
tiple forecasts for any given situation, beyond those in the
training data.

To be able to model the implicit behaviour and predict
especially the sudden, unexpected changes, it is essential
that these systems understand not only the spatial context

1

ar
X

iv
:2

10
3.

11
47

1v
1

 [
cs

.C
V

]
 2

1
M

ar
 2

02
1

but also the temporal context. This context should be iden-
tifiable, and adaptable. For instance, in urban simulations, it
is important to simulate trajectories with different character-
istics specific to the location and time e.g. slow pedestrians
in malls vs fast in busy streets, and so on. Simulations need
to be able to adapt to changing environments.

In this work, we propose a generative neural net-
work framework called CSG (Conditional Speed GAN)
that takes into account the aforementioned requirements.
We leverage the conditioning properties offered by condi-
tional GANs [15], to induce temporal structure to the la-
tent space in sequence generation system inspired by previ-
ous works [10, 12, 16]. Consequently, CSG can be condi-
tioned for controlled simulation. CSG is trained in a self-
supervised setting, on multiple contexts such as speed and
agent-type in order to generate trajectories specific to those
conditions, without the need for inductive bias in the form
of explicit aggregation methods used extensively in previ-
ous works [10,17–22]. The main contributions of this work
are as follows:

1. A generative system that can be conditioned on agent
speed and semantic classes of agents, to simulate mul-
timodal and realistic trajectories based on user defined
control.

2. A trajectory forecaster that uses predicted speeds from
the latent space to generate conditional future moves
that are socially acceptable, without special aggrega-
tion mechanisms like pooling or attention, and per-
forms comparable to state of the art, as validated on
several trajectory prediction benchmarks.

2. Related Work
There is a plethora of scientific work done in the past in

the field of trajectory forecasting. Based on structural as-
sumptions [23], the existing literature can broadly be clas-
sified as: 1. Ontological, which are mechanics-based, such
as the Cellular Automata model [9] , Reciprocal Veloc-
ity Obstacles (RVO) method [8], or the Social Forces (SF)
model [4] - that use dynamic systems to model the forces
that affect human motion. For instance, SF models dynam-
ics with newtonian controls, like, attraction towards goal,
and repulsion against other agents; these methods make
strong structural assumptions, and often fail to capture the
intricate motion dynamics [4,5,24,25], and 2. Phenomono-
logical, which are more data driven and aim to implic-
itly learn complex relationships and distributions. These
include methods such as GPR (Gaussian Process Regres-
sion) [26], Inverse Reinforcement learning [27], and the
more recent RNN based methods. However these methods
are still restrictive, e.g., GPR suffers from long inference
times [28]. RNNs have fairly recently gained traction in

trajectory forecasting [29, 30], due to their acclaimed suc-
cess in modelling long sequences, yielding an advantage in
prediction accuracies over previous deterministic methods.
In Social-LSTM [29], the authors introduced a grid-based
pooling method, in order to capture local intricate motion
dynamics, and thus introducing spatial sense in these net-
works. Inspite of their success, all these methods were lim-
iting because of their inability to model multimodal trajec-
tories.

2.1. Generative Models:

Generative methods, with recent advancements became
the natural choice for modelling trajectories, since they of-
fer distribution learning, rather than optimising on single
best outcome. Most related works employ some kind of
deep recurrent base with latent variable model, such as the
Conditional Variational Autoencoder (CVAE) [23,31] to ex-
plicitly encode multimodality or Generarative Adversarial
Networks (GAN) to implicitly do so [10, 12, 32]. A few
interesting GAN variants have been developed to tackle
some of the aforementioned challenges, such as the So-
cial GAN [10], which can produce multiple socially ac-
ceptable trajectories, and encouraged multimodal genera-
tion of by introducing a variety loss. Additionally, with the
pooling module, using permutation invariant max-pooling,
a kind of neighbourhood spatial embedding was introduced,
that demonstrated improvement over local grid-based en-
coding, such as the kind used in Social-LSTM [29]. This
was improved with an attention mechanism proposed in
SoPhie [12], which was explored by numerous following
works [21, 22, 33–35] and improved in Social Ways [11]
and Social BiGAT [16].

In the current state, the generative models can effectively
learn distributions and forecast diverse and acceptable tra-
jectories. However, there still exist open questions as to how
to decide which mode is best, or if the mean is good enough
for changing scenarios. Existing methods do not tackle the
problem of mode control, which is an essential characteris-
tic needed for simulation and adaptation to different scenar-
ios. Further, a key challenge is to find an ideal strategy to
aggregate information in scenes with variable neighbours,
and it remains unanswered whether special mechanisms like
pooling or attention are really needed.

Recently graph based methods have been introduced for
spatio-temporal modelling such as the Trajectron [28] that
takes as input the relative velocity of the neighbours to
model interaction or the Trajectron++ [13], an improved
variant. In this setup, each pedestrian is denoted as a
node, and two interacting pedestrians are connected with
an edge. The node representations learn the trajectory se-
quence, while the edge representations learn the interaction
sequence. While these methods provide state of the art re-
sults in terms of trajectory prediction metrics, such as av-

erage and final displacement error, they lack the ability of
explicit control in simulation environments.

2.2. Conditional GAN:

The objective of generative models is to approximate
the true data distribution, with which one can generate new
samples similar to real data.

GANs are useful frameworks for learning from a latent
distribution with only a small number of samples, yet they
can suffer in regards to output mode control. The mode con-
trol of the network requires some additional constraints that
force the network to sample from particular segments in the
distribution. Conditional GANs are an improvement over
GANs that allow such kind of control, by conditioning the
generation. As defined in [15], the objective function can be
framed as a two-player minimax game between generatorG
and discriminator D:

min
G

max
D

V (G,D) = Ex∼pdata(x)[log(D(x|c)]+

Ez∼pz(z)[log(1−D(G(z|c)))]
(1)

with c as the condition and pz(z) as the noise. G tries
to model the data distribution and produce realistic “fake”
samples, whereas D estimates the probability of a sample
being “real” or “fake” (part of the data or generated by G).
We use these methods as the backbone in our study, where
we induce further constraints on the latent vector model.

Variants of the conditional GAN have been explored in
the context of trajectory prediction, conditioning on motion
planning, weather effects or final goal [36–38] in order to
increase prediction accuracy. To the best of our knowledge,
no previous work built on conditional GANs for simulation
control nor used speed as a context vector to condition on.

2.3. Problem Formulation

Trajectory prediction or forecasting is the problem of
predicting the path <(xt, yt)|t = tobs + 1, . . . , T> that
some agent (e.g., pedestrian, cyclist, or vehicle- we omit
a subscript to indicate the agent here for better readabil-
ity) will move along in the future given the trajectory <
(xt, yt)|t = 0, . . . , tobs > that the agent moved along in the
past.

The objective of this work is to develop a deep generative
system that can accurately forecast motions and trajecto-
ries for multiple agents simultaneously with user controlled
speeds.

Given (xt, yt) as the coordinates at time t, L as the agent
type and speed S, we seek a function f to generate the next
timesteps (xt+1, yt+1) as follows:

(xt+1, yt+1) = f(xt, yt|S,L), (2)

where the generation of future timesteps is conditioned on
speed S and agent type L. While the agent type remains

constant over time, speed may vary per timestep. In sim-
ulation environments, speed S is a user-controlled vari-
able, while in prediction environments, the speed of future
timesteps is typically unknown. In order to be able to condi-
tion on the speed of the whole timeframe, including future
speeds of the yet to be generated trajectories, an estimate Ŝ,
learned from the data can be used.

3. Methodology
This section describes the components of the proposed

Conditional Speed GAN (CSG) model. CSG consists of
two main blocks (cf. Figure 1): the Generator block (G)
and the Discriminator block (D). G is comprised of: a) Fea-
ture Extraction module, that encodes the motion patterns
of agents, b) Speed Forecasting module, which predicts the
speed for the next move, c) Aggregation module, that jointly
learns the agent-agent interactions, d) Decoder, that gener-
ates or forecasts trajectories conditioned on the latent space,
speed and the agent label. D is composed of an LSTM en-
coder module encourages more realistic generation, specific
to the conditions, by classifying them as “real” or “fake”.

3.1. Preprocessing:

We first calculate the relative positions, for translational
invariance, as the difference to the previous timeframe
δxti = xti−x

t−1
i , δyti = yti−y

t−1
i with δx0i = δy0i = 0 from

the observed trajectory for each agent i. Even though the in-
ternal computation is based on relative positions (δxti, δy

t
i),

we still use (xti, y
t
i) throughout the paper to ease readability.

We calculate the speed labels based on Euclidean distance
between every two consecutive timeframes from the dataset
and scale them in the range (0,1). For the second condi-
tion, i.e., agent type, we assign nominal labels and one-hot
encode them.

3.2. Feature Extraction

To extract features from past trajectory of all agents in a
scene, we perform the following steps: We concatenate the
relative positions (xti, y

t
i) of each agent i with their derived

speeds Sti and agent-labels Lti.
Next, we embed this vector to a fixed length vector,

eti, using a single layer fully connected (FC) network, ex-
pressed as:

eti = αe((x
t
i, y

t
i)⊕ Sti ⊕ Lti;Wαe

), (3)

where, αe is the embedding function, and Wαe denote the
embedding weights.

3.2.1 Encoder:

In order to capture the temporal dependencies of all states of
an agent i, we pass the fixed length embeddings as input to

[a] FEATURE EXTRACTION

DATABASE

Encoder

[B] DISCRIMINATOR[d] DECODER

LSTM [1]

LSTM [i]

LSTM [n]

Real/
Fake

Real/
Fake

Real/
Fake

[c] SPEED FORECAST

LSTM [1]

LSTM [i]

LSTM [n]

LSTM [1]

LSTM [i]

LSTM [n]

+

+

+

𝜕𝑥!", 𝜕𝑦!"

FC

FC

FC

LSTM [i]

𝜕𝑥#", 𝜕𝑦#"

𝜕𝑥$" ,	𝜕𝑦$"

Ŝ!"#$

𝑆!"

𝐿!
"

z

+

+

+ z

z

[b] AGGREGATION

[A] GENERATOR

Figure 1. Overview of the CSG approach: the pipeline comprises of two main blocks: A) Generator Block, comprising of the following
sub-modules: (a) Feature Extraction, that encodes the relative positions and speeds of each agent with LSTMs, (b) Aggregation, that jointly
reasons multi agent interactions, (c) Speed forecast, that predicts the next timestep speed, (d) Decoder, that conditions on the next timestep
speed, agent label and the agent-wise trajectory embedding to forecast next timesteps, and, the B) Discriminator Block, that classifies the
generated outputs as “real” or “fake”, specific to the conditions.

the encoder LSTM, with the following recurrence for each
agent:

htei = LSTMenc(e
t
i, h

t−1
ei ;Wenc), (4)

where the hidden state is initialised with zeros, eti is the
input embedding, and Wenc are the shared weights among
all agents in a scene.

3.3. Aggregation Methods

To jointly reason across agents in space, and their in-
teraction, we employ aggregation mechanisms used widely
in previous research works [10, 12, 16, 39]. We use the so-
cial pooling from [10], attention similar to [12] and a sim-
ple concatenation of hidden states of N nearest neighbours.
The aggregation vector is computed using one of the three
mechanisms per agent, and concatenated to its latent space.

3.3.1 Pooling

Similar to [10], we consider the positions of each agent,
relative to all other agents in the scene, and pass it through
an embedding layer, followed by a symmetric function.

Let rti be the vector with relative position of an agent i
to all other agents in the scene, the social features are cal-
culated as:

f ti = αp(r
t
i ;Wαp

), (5)

where Wαp
denote the embedding weight. The social

features are concatenated with the hidden states htei and
passed through a multi-layer FC network followed by max-
pooling to obtain the final pooling vectors as:

ati = γp(h
t
ei ⊕ f ti ;Wγp), (6)

with Wγp as the weights of the FC network.

3.3.2 Attention

We implement a soft-attention mechanism similar to [12],
with the difference that we compute attention only on N
nearest agents for each agent in the scene. The nearest
pedestrians are sorted based on the euclidean distance be-
tween them. We compute the social features, and pass them
to the attention module, with the respective hidden states
from the encoder, as:

f ti = αa(r
t
i ;Wαa

),

ati = Attnso(h
t
ei ⊕ f ti ;Wso),

(7)

where Attnso is the soft attention with Wso weights.

3.3.3 Concatenation

For each agent i, we calculate N nearest neighbours and
concat their final hidden states. The concatenated hid-
den states are passed through a FC network that learns the
nearby agents interaction, as:

ati = γc(h
t
i ⊕ [hten|∀n ∈ N];Wγc), (8)

where htei and hten refer to the final encoder hidden states
of the current agent and N nearest agents respectively,

Finally, we concatenate and embed the final hidden states
of the encoder LSTMs htei along with the respective ag-
gregation function ati to a compressed size vector using a
multi-layer FC network and add gaussian noise z to induce
stochasticity.

hti = γ(htei ⊕ ati,Wγ)⊕ z, (9)

where γ denotes the multi-layer FC embedding function
with ReLU non-linearity , and embedding weights Wγ .

We treat these vectors as latent spaces to sample from for
conditional generation in the following stages.

3.4. Speed Forecasting:

In order to forecast the future speeds for each agent in
prediction environments, we use a module comprised of
LSTMs. We initialise the hidden states of the speed fore-
caster htsi with the latent vectors hti. The input is the cur-
rent timestep speed Sti and the future speed estimate Ŝt+1

i is
calculated by passing the hidden state through a FC network
with sigmoid activation in the following way:

htsi = LSTMsp(S
t
i , h

t−1
si ;Wsp),

Ŝt+1
i = γsp(h

t
si;Wγsp),

(10)

The forecasting module is trained simultaneously with the
other components, using ground truth St+1

i as feedback sig-
nal.

3.5. Decoder:

As we want the decoder to maintain the characteristics
of the past sequence, we initialise its hidden state htdi with
hti, and input the embedded vector of relative positions with
the conditions for control during training and simulation as:

dti = αd((x
t
i, y

t
i)⊕ St+1

i ⊕ Li;Wαd
). (11)

In prediction environments, we replace St+1
i with the esti-

mate Ŝt+1
i from the forecasting module. The hidden state

of the LSTM is fed through a FC network that outputs the
predicted relative position of each agent:

htdi = LSTMdec(d
t
i, h

t−1
di ;Wdec),

(x̂t+1
i , ŷt+1

i) = γd(h
t
di,Wγd),

(12)

whereWdec are the LSTM weights andWγd are the weights
of the FC network.

3.6. Discriminator

We use an LSTM encoder block as the Discriminator,
which is conditioned on the agent type and speeds to en-
courage the Generator to not only generate more realistic
and socially acceptable trajectories but also to conform to
the given conditions. The real input to D can be formulated
as:

Oi = <(xti, y
t
i), S

t
i , Li|t = 0, . . . , T>, (13)

including the observed (t = 0, . . . , tobs) and future ground
truth (t = tobs+1, . . . , T) relative positions. The fake input

can be formulated as:

Ôi =<(x
t
i, y

t
i), S

t
i , Li|t = 0, . . . , tobs>

⊕<(x̂ti, ŷti), Sti , Li|t = tobs + 1, . . . , T>,
(14)

including the observed and predicted relative positions.
The discriminator equation can be framed as:

htdsi = LSTMdsi(αdi(o
t
i;Wαdi

), ht−1
dsi ;Wdsi), (15)

where αdi is the embedding function with corresponding
weights Wαdi

, Wdsi are the LSTM weights. oti is the input
element from the real or fake sequenceOi or Ôi. The real or
fake classification scores are calculated by applying a multi-
layer FC network with ReLu activations on the final hidden
state of the LSTMs, as:

Ĉi = γdi(h
t
dsi;Wγdi), (16)

3.7. Losses

In addition to optimising the GAN minimax game, we
apply the L2 loss on the generated trajectories, and L1 loss
for the speed forecasting module. The network is trained by
minimising the following losses, taking turns:
The Discriminator loss is framed as:

`D(Ĉi, Ci) = −Ci log(Ĉi)− (1− Ci) log(1− Ĉi), (17)

The Generator loss together with L2 and L1 loss becomes:

`G(Ôi) + `2((x
t
i, y

t
i), (x̂

t
i, ŷ

t
i)) + `1(S

t
i , Ŝ

t
i), (18)

for t = tobs + 1, . . . , T . The Generator loss is the Discrim-
inator’s ability to correctly classify data generated by G as
“fake”, expressed as:

`G(Ôi) = − log(1− Ĉi), (19)

where Ĉi is the discriminator’s classification score.

4. Experiments
4.1. Datasets:

For single agent predictions, we perform experiments on
two publicly available datasets: ETH [40] and UCY [41],
which contain complex pedestrian trajectories. The ETH
dataset contains two scenes each with 750 different pedes-
trians and is split into two sets (ETH and Hotel). The
UCY dataset contains two scenes with 786 people. This
dataset has 3-components: ZARA-01, ZARA- 02 and
UNIV. As shown in [42], these datasets also cover chal-
lenging group behaviours such as couples walking together,
groups crossing each other and groups forming and dispers-
ing in some scenes, and contain several other non-linear

trajectories. In order to be able to test the model on mul-
tiple classes of agents, we utilise the Argoverse motion pre-
diction dataset [43]. Similar to [44], we train and test on
5126 and 1678 samples respectively. The dataset consists
of video segments, recorded in different cities like Miami
and Pittsburgh with high quality multi agent trajectories.
The labels available in the dataset are av, for autonomous
vehicles, agent for other vehicles and other includes other
agents present in the scene. We convert the real-world co-
ordinates from the datasets to image coordinates and plot
them in real-world maps, so as to qualitatively evaluate the
predictions. All plots are best viewed in colour.

4.2. Metrics

We compare our work in regards to the benchmark met-
rics followed extensively by previous works [10–12]:

1. Final Displacement Error (FDE), which computes the
euclidean distance between the final points of the
ground truth and the predicted final position, and,

2. Average Displacement Error (ADE), which averages
the distances between the ground truth and predicted
output across all timesteps.

We generate K samples per prediction step and report the
distance metrics for the best out of the K samples. In ad-
dition, we report average percentage of collisions per frame
as a measure to evaluate the quality of generated predictions
in terms of collision avoidance. If two or more pedestrians
are closer than an euclidean distance of 0.10m, we consider
it as a collision.

4.3. Simulation

4.3.1 Speed Extrapolation

We split the data into three folds according to derived
speeds i.e. slow, medium and fast with 0.33, 0.66 and 1 as
the thresholds respectively. Using CSG with concatenation
as the aggregation mechanism, we train on two folds at a
time and simulate the agents in the test set of these folds
with controlled speeds from the fold left out. We observe
controllability in all three segments, indicating the ability to
extrapolate to unseen contexts (cf. Figure 2). In Figure 2(a),
pedestrians from fast (on left) and medium (on right) folds
are simulated at slow speeds. We clearly observe the pedes-
trians adapt in a meaningful way, traversing lesser distance
compared to the ground truth. In Figure 2(b) and (c), simi-
larly, we simulate at the medium and fast speeds unseen in
the training set.

We observe, regardless of the properties present in the
training set, the network is able to extrapolate the contextual
features to a certain degree, indicating some distributional
changes due to localised causal interventions. In addition,
to evaluate if social constraints are met, we compute the

(a) Slow

(b) Medium

(c) Fast

Figure 2. (a) Pedestrians from fast (on left) and medium folds (on
right) simulated at slow speeds. (b) Pedestrians from fast fold sim-
ulated at medium speeds, and (c) Pedestrians from slow (on left)
and medium folds (on right) simulated at fast speeds. Ground truth
values are marked in blue. The network extrapolates to unseen
speed contexts.

average percentage of collisions in each frame of the simu-
lation and compare with the ground truth (cf. Table 1). It is
to be noted that collisions in the fast fold is zero, due to lim-
ited and sparse pedestrians in the ground truth of that split.

Table 1. Average percent collisions per frame for Slow, Medium
and Fast folds.

Method Slow Medium Fast

GT 0.0128 0.0042 0.0

CSG-C 0.1557 0.2773 0.1310

4.3.2 Multimodal and socially aware

We demonstrate that CSG can generate diverse and socially
acceptable trajectories, with simulation control.

Figure 3 illustrates the different speed control for agents
predicted for 8 timeframes: (a) shows a fast moving pedes-
trian simulated at medium speeds with K=5, expressing a
diverse generation for the controlled mode. Figure 3(b) il-
lustrates preservation of social dynamics: two pedestrians
simulated at different speeds circumvent a possible colli-
sion by walking around stationary people. Figure 3(c) de-
picts group walking behaviour with slow and fast simula-
tions: the pedestrians continue to walk together, and adjust

their paths in order to be able to do so. Figure 3(d) depicts
another complex collision avoidance scenario: the pedes-
trians decide to split up and walk around the approaching
pedestrian, when simulated at fast speeds.

4.4. Effect of Aggregation method

We evaluate the performance of our method with dif-
ferent aggregation strategies, one at a time, keeping all
other factors constant. CSG, CSG-P, CSG-C and CSG-
A refer to our method without aggregation, with pooling,
with concatenation and with attention respectively. We ob-
serve (cf. Table 4) that the concatenation strategy consis-
tently outperforms all other, followed by the attention and
max-pooling methods, in that order. CSG performs slightly
worse in terms of collision avoidance compared to the vari-
ants with aggregation. In Figure 4, CSG-C appears to pre-
serve social dynamics quite well, by generating a relatively
more curved trajectory so as to avoid collision in a complex
scenario. In terms of final displacement metrics (cf. Ta-
ble 5), we observe no significant difference between ei-
ther variant. CSG, without aggregation appears to repli-
cate the ground truth trajectories the best. Regardless of the
choice, CSG reduces collisions compared to SGAN, indi-
cating that the speed forecasting module might yield some
natural structure in latent space.

4.5. Trajectory Prediction

4.5.1 Single agent type (pedestrian)

We evaluate our model on the five sets of ETH and UCY
data, with a hold-one-out approach (i.e. training of four sets
at a time and evaluating on the set left out) and compare
with the following baseline methods:
SGAN [10]: GAN with a pooling module to capture the
agent interactions,
SoPhie [12]: GAN with physical and social attention,
S-Ways [11]: GAN with Information loss instead of the L2,
S-BIGAT [16]: Bicycle-GAN augmented with Graph At-
tention Networks (GAT),
CGNS [45]: CGAN with variational divergence minimiza-
tion, and
Goal-GAN [38]: GAN that predicts the final goal position
and conditions its generation on it.

Table 2 depicts the final metrics for 12 predicted
timesteps (4.8 seconds). Similar to other methods [10, 16],
we generate K=20 samples for a given input trajectory, and
report errors for the best one. On a quantitative compari-
son with other GAN models (cf. table 2), we observe that
our model outperforms SGAN, Sophie, S-Bigat and CGNS
in HOTEL and ZARA2, while performs competitively in
other datasets. S-Ways, SoPhie and Social-Bigat perform
on par with CSG in the UNIV dataset however CSG con-
stantly outperforms S-Ways in ZARA1, ZARA2 and HO-
TEL datasets. In comparison with GoalGAN, our model

performs better in UNIV, ZARA1 and ZARA2 datasets
while GoalGAN performs relatively better in ETH and HO-
TEL datasets. Overall, CSG performs best on ZARA2 and
on average is comparable to the state-of-the-art GAN based
methods.

4.5.2 Multi agent type (Argoverse Dataset)

With respect to multi agent problem, we compare our model
with:
CS-LSTM [46]: Combination of CNN network with LSTM
architecture
TraPHic [47]: Combination of CNN LSTM networks inte-
grated with spatial attention pooling
SGAN [10]: GAN network with max pooling approach to
predict future human trajectories
Graph-LSTM [48]: Graph convolution LSTM network us-
ing dynamic weighted traffic-graphs that predicts future tra-
jectories and road-agent behavior.

We utilise the first 2 seconds as observed input to predict
the next 3 seconds and report the metrics in Table 3. We ob-
serve that our model outperforms SGAN (cf. table 3) by a
large margin and performs better than TraPHic, CS-LSTM
in terms of FDE but doesn’t perform as well when com-
pared with ADE. Graph-LSTM performs overall the best.
However, CSG can explicitly control generation of hetero-
geneous agents and with user defined speeds.

5. Conclusion and Future Work
We present a method for generation and controlled sim-

ulation of diverse multi agent trajectories in realistic sce-
narios. We show that our method can be used to explicitly
condition generation for greater control and ability to adapt
context. Further, we demonstrate with our experiments the
efficacy of the model in forecasting mid-range sequences (5
seconds) with an edge over most existing GAN based vari-
ants. It may be that most models are optimised to reduce
the overall distance metrics, but not collisions. The mod-
els are expected to learn the notion of collision avoidance
implicitly. By focussing explicitly on relative velocity pre-
dictions, we obtain more domain knowledge driven control
over the design of the interaction order. Further, we ob-
serve that a simple concatenation of the final hidden state
vectors of N neighbours is good enough strategy for ag-
gregating information across agents in a scene. While this
approach relatively simple, it is efficient, and removes the
need to design complex mechanisms. Finally, we acknowl-
edge there is room for improvement. This method could be
extended by learning context vectors of variation automati-
cally and interpreting them. Additionally, it might be useful
to explore techniques to optimise on social dynamics such
as collision avoidance and to condition with static scene in-
formation to improve interactions in space.

(a) (b) (c) (d)

Figure 3. (a) A fast moving pedestrian simulated at medium speeds, with K = 5, shows a diverse selection of paths (Multimodality). (b)
Two pedestrians simulated at different speeds walk around stationary people (Collision avoidance). (c) Two pedestrians walking together,
simulated at fast and slow speeds, find corresponding paths in order to walk together (Group walking). (d) Two pedestrians walking
together adjust their paths in order to circumvent the approaching pedestrian. All ground truth trajectories are marked in blue.

Table 2. A comparison of GAN based methods on ADE/FDE scores for 12 predicted timesteps (4.8 seconds) with K=20. For CSG, we
report the metrics with the mean and variance for 20 runs. Lower is better, and best is in bold.

Dataset SGAN [10] SoPhie [12] S-Ways [11] S-BIGAT [16] CGNS [45] GoalGAN [38] CSG (Ours)

ETH 0.87/1.62 0.70/1.43 0.39/0.64 0.69/1.29 0.62/1.40 0.59/1.18 0.81 ± 0.02/
1.50 ± 0.03

HOTEL 0.67/1.37 0.76/1.67 0.39/0.66 0.49/1.01 0.70/0.93 0.19/0.35 0.36 ± 0.01/
0.65 ± 0.02

UNIV 0.76/1.52 0.54/1.24 0.55/1.31 0.55/1.32 0.48/1.22 0.60/1.19 0.54 ± 0.01/
1.16 ± 0.01

ZARA1 0.35/0.68 0.30/0.63 0.44/0.64 0.30/0.62 0.32/0.59 0.43/0.87 0.36 ± 0.02/
0.76 ± 0.01

ZARA2 0.42/0.84 0.38/0.78 0.51/0.92 0.36/0.75 0.35/0.71 0.32/0.65 0.28 ± 0.01/
0.57 ± 0.02

AVG 0.61/1.21 0.54/1.15 0.46/0.83 0.48/1.00 0.49/0.71 0.43/0.85 0.47/0.93

(a) No Agg.

(c) Pooling

(b) Concat

(d) Attention

Figure 4. Effect of aggregation methods. (a) No aggregation can
sometimes result in avoidable collisions. (b) Trajectories with
concat as aggregation show a smoother detour around approach-
ing pedestrians, indicating better preservation of natural dynamics
compared to the pooling (c) and attention (d) variants.

References

[1] Changan Chen, Yuejiang Liu, Sven Kreiss, and Alexandre
Alahi. Crowd-robot interaction: Crowd-aware robot navi-
gation with attention-based deep reinforcement learning. In
2019 International Conference on Robotics and Automation
(ICRA), pages 6015–6022. IEEE, 2019.

[2] Andreas Horni, Kai Nagel, and Kay W Axhausen. The multi-
agent transport simulation MATSim. Ubiquity Press, 2016.

[3] Amir Rasouli and John K Tsotsos. Autonomous vehicles
that interact with pedestrians: A survey of theory and prac-
tice. IEEE transactions on intelligent transportation systems,
21(3):900–918, 2019.

[4] Dirk Helbing and Peter Molnar. Social force model for
pedestrian dynamics. Physical review E, 51(5):4282, 1995.

[5] Gianluca Antonini, Michel Bierlaire, and Mats Weber. Dis-
crete choice models of pedestrian walking behavior. Trans-
portation Research Part B: Methodological, 40(8):667–687,
2006.

[6] Jack M Wang, David J Fleet, and Aaron Hertzmann. Gaus-
sian process dynamical models for human motion. IEEE
transactions on pattern analysis and machine intelligence,
30(2):283–298, 2007.

[7] Bin Yu, Ke Zhu, Kaiteng Wu, and Michael Zhang. Im-
proved opencl-based implementation of social field pedes-
trian model. IEEE transactions on intelligent transportation
systems, 21(7):2828–2839, 2019.

[8] Jur Van den Berg, Ming Lin, and Dinesh Manocha. Recip-
rocal velocity obstacles for real-time multi-agent navigation.
In 2008 IEEE International Conference on Robotics and Au-
tomation, pages 1928–1935. IEEE, 2008.

[9] Jos Elfring, René Van De Molengraft, and Maarten Stein-
buch. Learning intentions for improved human motion pre-

Table 3. ADE/FDE scores on Argoverse Dataset. We report our score as an average of 20 runs

Dataset Name CS-LSTM [46] TraPHic [47] SGAN [10] Graph-LSTM [48] CSG (Ours)

Argoverse 1.050/ 3.085 1.039/ 3.079 3.610/ 5.390 0.99/ 1.87 1.39 ± 0.02/2.95 ± 0.05

Table 4. Average percent collisions per predicted frame. A colli-
sion is detected if the distance between two pedestrians are less
than 0.10m. Lower is better, and best is in bold.

Dataset SGAN CSG CSG-P CSG-A CSG-C

ETH 0.2237 0.3167 0.2603 0.2373 0.1881

HOTEL 0.2507 0.2143 0.1773 0.2177 0.0917

UNIV 0.5237 0.5338 0.6064 0.6425 0.6025

ZARA1 0.1103 0.0464 0.0660 0.0680 0.0328

ZARA2 0.5592 0.2184 0.2768 0.2258 0.1988

AVG 0.3335 0.2659 0.2774 0.2783 0.2228

Table 5. Effect of aggregation method. ADE/FDE scores for the
different CSG variants on 12 predicted timesteps (4.8 s).

Dataset CSG CSG-P CSG-A CSG-C

ETH 0.81/1.50 0.82/1.56 0.89/1.65 0.82/1.56

HOTEL 0.36/0.65 0.34/0.64 0.33/0.59 0.34/0.63

UNIV 0.54/1.16 0.58/1.18 0.66/1.38 0.62/1.31

ZARA1 0.36/0.76 0.35/0.72 0.35/0.73 0.37/0.76

ZARA2 0.28/0.57 0.30/0.63 0.29/0.60 0.31/0.65

AVG 0.47/0.93 0.48/0.95 0.50/0.99 0.49/0.98

diction. Robotics and Autonomous Systems, 62(4):591–602,
2014.

[10] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese,
and Alexandre Alahi. Social gan: Socially acceptable tra-
jectories with generative adversarial networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2255–2264, 2018.

[11] Javad Amirian, Jean-Bernard Hayet, and Julien Pettré. So-
cial ways: Learning multi-modal distributions of pedestrian
trajectories with gans. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 0–0, 2019.

[12] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki
Hirose, Hamid Rezatofighi, and Silvio Savarese. Sophie:
An attentive gan for predicting paths compliant to social and
physical constraints. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1349–
1358, 2019.

[13] Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and
Marco Pavone. Trajectron++: Dynamically-feasible trajec-
tory forecasting with heterogeneous data. arXiv preprint
arXiv:2001.03093, 2020.

[14] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry Yershov,
and Emilio Frazzoli. A survey of motion planning and con-
trol techniques for self-driving urban vehicles. IEEE Trans-
actions on intelligent vehicles, 1(1):33–55, 2016.

[15] Mehdi Mirza and Simon Osindero. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784, 2014.

[16] Vineet Kosaraju, Amir Sadeghian, Roberto Martı́n-Martı́n,
Ian Reid, Hamid Rezatofighi, and Silvio Savarese. Social-
bigat: Multimodal trajectory forecasting using bicycle-gan
and graph attention networks. In Advances in Neural Infor-
mation Processing Systems, pages 137–146, 2019.

[17] Daksh Varshneya and G Srinivasaraghavan. Human trajec-
tory prediction using spatially aware deep attention models.
arXiv preprint arXiv:1705.09436, 2017.

[18] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B
Choy, Philip HS Torr, and Manmohan Chandraker. Desire:
Distant future prediction in dynamic scenes with interacting
agents. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 336–345, 2017.

[19] Federico Bartoli, Giuseppe Lisanti, Lamberto Ballan, and
Alberto Del Bimbo. Context-aware trajectory prediction. In
2018 24th International Conference on Pattern Recognition
(ICPR), pages 1941–1946. IEEE, 2018.

[20] Hao Xue, Du Q Huynh, and Mark Reynolds. Ss-lstm: A hi-
erarchical lstm model for pedestrian trajectory prediction. In
2018 IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 1186–1194. IEEE, 2018.

[21] Sirin Haddad, Meiqing Wu, He Wei, and Siew Kei Lam.
Situation-aware pedestrian trajectory prediction with spatio-
temporal attention model. arXiv preprint arXiv:1902.05437,
2019.

[22] Tharindu Fernando, Simon Denman, Sridha Sridharan, and
Clinton Fookes. Gd-gan: Generative adversarial networks
for trajectory prediction and group detection in crowds.
In Asian Conference on Computer Vision, pages 314–330.
Springer, 2018.

[23] Boris Ivanovic, Karen Leung, Edward Schmerling, and
Marco Pavone. Multimodal deep generative models for tra-
jectory prediction: A conditional variational autoencoder ap-
proach. IEEE Robotics and Automation Letters, 6(2):295–
302, 2020.

[24] Meng Keat Christopher Tay and Christian Laugier. Mod-
elling smooth paths using gaussian processes. In Field and
Service Robotics, pages 381–390. Springer, 2008.

[25] Kota Yamaguchi, Alexander C Berg, Luis E Ortiz, and
Tamara L Berg. Who are you with and where are you go-
ing? In CVPR 2011, pages 1345–1352. IEEE, 2011.

[26] Andrew Gordon Wilson, David A. Knowles, and Zoubin
Ghahramani. Gaussian process regression networks, 2011.

[27] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse
reinforcement learning. In Icml, volume 1, page 2, 2000.

[28] Boris Ivanovic and Marco Pavone. The trajectron: Proba-
bilistic multi-agent trajectory modeling with dynamic spa-
tiotemporal graphs. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 2375–2384,
2019.

[29] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan,
Alexandre Robicquet, Li Fei-Fei, and Silvio Savarese. So-
cial lstm: Human trajectory prediction in crowded spaces. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 961–971, 2016.

[30] Jeremy Morton, Tim A Wheeler, and Mykel J Kochenderfer.
Analysis of recurrent neural networks for probabilistic mod-
eling of driver behavior. IEEE Transactions on Intelligent
Transportation Systems, 18(5):1289–1298, 2016.

[31] Edward Schmerling, Karen Leung, Wolf Vollprecht, and
Marco Pavone. Multimodal probabilistic model-based plan-
ning for human-robot interaction. In 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 3399–3406. IEEE, 2018.

[32] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-
tus Odena. Self-attention generative adversarial networks,
2019.

[33] Jianhua Sun, Qinhong Jiang, and Cewu Lu. Recursive social
behavior graph for trajectory prediction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 660–669, 2020.

[34] Chaofan Tao, Qinhong Jiang, Lixin Duan, and Ping Luo. Dy-
namic and static context-aware lstm for multi-agent motion
prediction. arXiv preprint arXiv:2008.00777, 2020.

[35] Jiachen Li, Fan Yang, Masayoshi Tomizuka, and Chiho
Choi. Evolvegraph: Multi-agent trajectory prediction with
dynamic relational reasoning. Proceedings of the Neural In-
formation Processing Systems (NeurIPS), 2020.

[36] Thibault Barbi and Takeshi Nishida. Trajectory prediction
using conditional generative adversarial network. In 2017
International Seminar on Artificial Intelligence, Network-
ing and Information Technology (ANIT 2017). Atlantis Press,
2017.

[37] Yutian Pang and Yongming Liu. Conditional generative ad-
versarial networks (cgan) for aircraft trajectory prediction
considering weather effects. In AIAA Scitech 2020 Forum,
page 1853, 2020.

[38] Patrick Dendorfer, Aljosa Osep, and Laura Leal-Taixé. Goal-
gan: Multimodal trajectory prediction based on goal position
estimation. In Proceedings of the Asian Conference on Com-
puter Vision, 2020.

[39] Anirudh Vemula, Katharina Muelling, and Jean Oh. Social
attention: Modeling attention in human crowds. In 2018
IEEE international Conference on Robotics and Automation
(ICRA), pages 1–7. IEEE, 2018.

[40] Stefano Pellegrini, Andreas Ess, and Luc Van Gool. Improv-
ing data association by joint modeling of pedestrian trajec-
tories and groupings. In European conference on computer
vision, pages 452–465. Springer, 2010.

[41] Laura Leal-Taixé, Michele Fenzi, Alina Kuznetsova, Bodo
Rosenhahn, and Silvio Savarese. Learning an image-based
motion context for multiple people tracking. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3542–3549, 2014.

[42] Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc
Van Gool. You’ll never walk alone: Modeling social be-
havior for multi-target tracking. In 2009 IEEE 12th Inter-
national Conference on Computer Vision, pages 261–268.
IEEE, 2009.

[43] Ming-Fang Chang, John W Lambert, Patsorn Sangkloy, Jag-
jeet Singh, Slawomir Bak, Andrew Hartnett, De Wang, Peter
Carr, Simon Lucey, Deva Ramanan, and James Hays. Argov-
erse: 3d tracking and forecasting with rich maps. In Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2019.

[44] Rohan Chandra, Tianrui Guan, Srujan Panuganti, Trisha
Mittal, Uttaran Bhattacharya, Aniket Bera, and Dinesh
Manocha. Forecasting trajectory and behavior of road-agents
using spectral clustering in graph-lstms. 12 2019.

[45] Jiachen Li, Hengbo Ma, and Masayoshi Tomizuka. Con-
ditional generative neural system for probabilistic trajectory
prediction. arXiv preprint arXiv:1905.01631, 2019.

[46] Nachiket Deo and Mohan M Trivedi. Convolutional social
pooling for vehicle trajectory prediction. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 1468–1476, 2018.

[47] Rohan Chandra, Uttaran Bhattacharya, Aniket Bera, and Di-
nesh Manocha. Traphic: Trajectory prediction in dense and
heterogeneous traffic using weighted interactions. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 8483–8492, 2019.

[48] Rohan Chandra, Tianrui Guan, Srujan Panuganti, Trisha
Mittal, Uttaran Bhattacharya, Aniket Bera, and Dinesh
Manocha. Forecasting trajectory and behavior of road-agents
using spectral clustering in graph-lstms. IEEE Robotics and
Automation Letters, 5(3):4882–4890, 2020.

